MAthematics is All Around Us

Alfred S. Posamentier, Ph.D.

Executive Director for Internationalization and Sponsored Programs

Long Island University, New York

Former Dean of the School of Education and Professor Emeritus of Mathematics Education at City College of the City University of New York

Why are sewer covers round?

Because they can then never fall in the hole.

Which other geometric shape can also be used?

The German engineer Franz Reuleaux (1829 - 1905) developed a shape that has properties similar to a circle.

The shape that is now called a Reuleaux triangle.

All opposite points are everywhere equidistant.

Therefore, it can be used on a fire hydrant.

- ...and it can also be used as a sewer cover!

The Austrian mathematician Wilhelm Blaschke (1885-1962) proved that given any number of such figures of equal breadth, the Reuleaux triangle will always possess the smallest area, and the circle will have the greatest area.

Here is another figure of constant breadth.

Whispering Points

Whispering spots at Grand Central Railroad station, New York

Whispering spots in the Statuary Hall

 of the Capitol Building, Washington, D.C.

Parabolic Reflector

Parabolic reflector of a flashlight

Dual Parabolic Reflector
as can be found at a playground

Which rectangle is most pleasing to look at?

Was this your choice?

1:1

$5: 6$

$21: 34$

$13: 23$

The Golden Ratio

$\frac{\text { width }}{\text { length }}=\frac{\text { length }}{\text { width }+ \text { length }}$

The Golden Ratio

$$
\begin{aligned}
& \phi=\frac{\text { length }}{\text { width }}=\frac{\text { Width }+ \text { length }}{\text { length }}=\frac{\text { width }}{\text { length }}+\frac{\text { length }}{\text { length }} \\
& \phi= \\
& \frac{1}{\phi}+1 \\
& \phi^{2}-\phi-1=0
\end{aligned}
$$

Applying the quadratic formula we get: $\phi=\frac{1 \pm \sqrt{5}}{2}$
$=\frac{1+\sqrt{5}}{2}=1.6180339887498948482045868343656$

Remember:

The Golden Ratio, ϕ, is the only number which is 1 greater than its reciprocal.

$$
\phi=1+\frac{1}{\phi}
$$

A typical knot leads to the Golden Ratio

Constructing a Golden Rectangle

Creating a Golden Spiral

Locating the Vanishing Point

A Spiral in Nature

The Golden Angle

$\frac{360^{\circ}}{\phi}=222.4 \ldots{ }^{\circ}$ and $360^{\circ}-\frac{360^{\circ}}{\phi}=360^{\circ}(2-\phi)=137.5 \ldots$

Common Clock Pictures - Using the Golden Angle

The Golden Rectangle Used in Architecture

A Sketch of the Golden Rectangle Superimposed on the Parthenon

More Architectural Applications of the Golden Rectangle

Il Duomo di Firenze exhibits the Fibonacci numbers

Florence Cathedral - View of the dome.

The United Nations building in New York City

Leonardo da Vinci (1452-1519) illustrated the book De divina proporzione by Fra Luca Pacioli (ca. 1445-1517) with an anatomical study of the "Vitruvian" man. This drawing supported Pacioli's discussion of the Roman architect Vitruvius (ca. 84 B.C.E. - 27 B.C.E.).

Side of square $\approx \phi$, which is the Golden Ratio Radius of circle

Portrait of Luca Pacioli

Mona Lisa is also proportioned "goldenly"

Bathers at Asmieres by Georges Seurat

The Circus Parade by Georges Seurat

Modulor by Le Corbusier

The oldest building in Germany: Königshalle in Lorsch built in 770.

Apollo Belvedere

Venus de Milos

What is the probability that in a room with 35 people there will be 2 with the same birthdate?

Perhaps 2 out of 365 ?
That would be a probability of $\frac{2}{365}=.005479 \approx \frac{1}{2} \%$

This is a minuscule chance.

Let's consider a randomly selected group.

From the "randomly" selected group of the first 35 United States presidents there are two with the same birth date:

The $11^{\text {th }}$ president, James K. Polk (November 2, 1795), and
The $29^{\text {th }}$ president, Warren G. Harding (November 2, 1865).

Let's consider a group of 35 people.
What do you think is the probability that one selected person matches his own birth date?
Clearly certainty, or 1.
This can be written as $\cdot \frac{365}{365}$
The probability that another person does not match the first person is. $\frac{365-1}{365}=\frac{364}{365}$
The probability that a third person does not match the first and second person is $\frac{365-2}{365}=\frac{363}{365}$
The probability of all 35 people not having the same birth date is the product of these probabilities:

$$
p=\frac{365}{365} \cdot \frac{365-1}{365} \cdot \frac{365-2}{365} \cdots \cdot \frac{365-34}{365} .
$$

Since the probability (q) that two people in the group have the same birth date and the probability (p) that two people in the group do not have the same birth date is a certainty, the sum of those probabilities must be 1. Therefore, $p+q=1$.

In this case, $q=1-\frac{365}{365} \cdot \frac{365-1}{365} \cdot \frac{365-2}{365} \cdots \cdot \frac{365-33}{365} \cdot \frac{365-34}{365} \approx .8143832388747152$
Which is about 8 out of 10 times! WOW!!!

Number of people in group	Probability of a birth date match
10	. 1169481777110776
15	. 2529013197636863
20	. 4114383835805799
25	. 5686997039694639
30	. 7063162427192686
35	. 8143832388747152
40	. 891231809817949
45	. 9409758994657749
50	. 9703735795779884
55	. 9862622888164461
60	. 994122660865348
65	. 9976831073124921
70	. 9991595759651571

The rule of 72

If you want to know how long it will take you to double your money compounded regularly at $x \%$, all you need to do is to divide 72 by x.

For example, and 4% interest compounded regularly your money will double in $\frac{72}{4}=18$ years.

A Famous Numerical Loop

- You are asked to follow two rules as you select any natural number:
- If the number is odd then multiply by 3 and add 1.
- If the number is even then divide by 2.
- Regardless of the number you select, after continued repetition of the process, you will always end up with the number 1 .

Let's try it for the arbitrarily selected number 7.
7 is odd, therefore, multiply by 3 and add 1 to get: $7 \cdot 3+1=\mathbf{2 2}$
22 is even, so we simply divide by 2 to get 11
11 is odd, so we multiply by 3 and add 1 to get 34 .
34 is even, so we divide by 2 to get 17.
17 is odd, so we multiply by 3 and add 1 to get 52 .
52 is even, so we divide by 2 to get 26.
26 is even, so we divide by 2 to get 13 .
13 is odd, so we multiply by 3 and add 1 to get 40 .
40 is even, so we divide by 2 to get 20.
20 is even, therefore, divide by 2 to get 10.
10 is even, therefore, divide by 2 to get 5 .
5 is odd, so we multiply by 3 and add 1 to get 16 .
16 is even, so we divide by 2 to get 8 .
8 is even, so we divide by 2 to get 4 .
4 is even, so we divide by 2 to get 2.
2 is also even, so we again divide by 2 to get 1 .

A word of caution!

- When you begin with 9,
- it will take 19 steps
- When you begin with 41 ,
- it will take 109 Steps

Getting into an Endless Loop

- Choose a 4-digit number (not one with all four digits the same).
- Rearrange the digits to make the biggest and smallest number.
- Subtract the two numbers.
- With this new number, continue this process.
- Soon you will get 6,174.
- But keep going!
- What do you notice?

We will (randomly) select the number 3,203

- The largest number formed with these digits is: 3320.
- The smallest number formed with these digits is: 0233.
- The difference is: 3087.
- The largest number formed with these digits is: 8730.
- The smallest number formed with these digits is: 0378.
- The difference is: 8352.
- The largest number formed with these digits is: 8532.
- The smallest number formed with these digits is: 2358.
- The difference is: 6174.
- The largest number formed with these digits is: 7641.
- The smallest number formed with these digits is: 1467.
- The difference is: 6174.
- And so the loop is formed, since you keep on getting 6174 if you continue

Another loop!

- Get the sum of the squares of the digits of any number:
- Let us use the number 5 .
- Keep on taking the sum of the squares of the digits.

$$
5^{2}=25, \quad 2^{2}+5^{2}=29, \quad 2^{2}+9^{2}=85, \quad 8^{2}+5^{2}=\mathbf{8 9},
$$

$$
\begin{aligned}
& 8^{2}+9^{2}=145, \quad 1^{2}+4^{2}+5^{2}=42, \quad 4^{2}+2^{2}=20, \quad 2^{2}+0^{2}=4, \quad 4^{2}=16, \\
& 1^{2}+6^{2}=37, \quad 3^{2}+7^{2}=58, \quad 5^{2}+8^{2}=\mathbf{8 9}, \ldots
\end{aligned}
$$

Mathematics can be entertaining.

- In mathematics, the peculiarities are amazing!
- Most concepts are interconnected; and the fun is to discover these connections.
- There are endlessly many
- amazements and surprises awaiting you!

Some suggested sources from: www.Prometheus Books.com

ALFRED S. POSAMENTIER G BERND THALLER

math
 Charmers

Tantalizing Fidfits
for the mind
alfreds. posamentier
forvered by herbert a. havptman. nobel lavreate

JỖY,
 MATHEMATICS

Marvels, Novelties, and
Neglected Gems That Are Rarely Taught in Math Class

I hope you enjoyed the entertaining aspects of mathematics!

- Any questions?
- Please ask now!
- Or contact me at:
- Dr. Alfred Posamentier
- Long Island University, New York
- 1 University Plaza
- Brooklyn, New York 11201
- Mobile: +1 917-837-1400
- Austrian Handy: +43 6645989884
- alfred.posamentier@LIU.edu
- asp1818@gmail.com

